

4-Wire HDSL2/56KBPS Isolation Card With 130/190V Span Powering

> Description & Installation P30128

10/26/2012

T0413 Rev. D

Table of Contents

1.0	SCOPE		
2.0	PRODUCT OVERVIEW	2	
	2.1 System Requirements2.2 Intended Uses	2	
3.0	PRODUCT FEATURES	2	
	3.1 Transformer Isolation	2	
	3.2 Termination of Simplex Sealing Current	3	
	3.3 Provide Span Powering	3	
4.0	INSTALLATION	3	
	4.1 Setting Switch SW1	3	
	4.2 Accessing Remote Ground	4	
	4.3 Insertion of Card	4	
	4.4 Powering The Card	4	
5.0	Physical Characteristics		
6.0	Specifications	5	
	Table 1: Isolation Specifications	5	
	Table 2: External System Input Requirements	5	
	Table 3: Performance Specifications	5,6	
	rable 5. Terrormance Speemeations	5,0	

1.0 SCOPE

This document describes the specifications, requirements and installation instructions for the transformer-based, P30128 SNC Lyte Lynx® 56 kbps 4-Wire Data Isolation card. It provides an understanding of the basic functions and features available with this product.

2.0 PRODUCT OVERVIEW

2.1 System Requirements

The P30128 isolation card is designed for installation in an SNC Lyte Lynx® or Teleline Isolator* Card Shelf. No powering is required for these passive devices. However, if a span powering is required to operate the termination equipment or HDSL remote unit, the remote side and the station side of this data card should be powered.

2.2 Intended Uses

This data isolation model provides an isolated interface for 4-wire digital or analog data circuits while providing span power toward the customer equipment. Types of digital circuits protected include rates of 2.4 kbps to 72 kbps as used in services such as Synchronet, Basic Rate ISDN and HDSL carrier frequencies. Types of analog circuits protected include rates of 100 Hz to 200 kHz as used in analog carrier, modems, SCADA, tone relay control and tone signaling.

The primary function of the card is to provide isolation from hazardous voltages while being "transparent" in the circuit. All signaling information within the specified frequency bandwidth will be unaffected. However, DC signaling is not supported. A secondary function is to provide termination for the loopback of DC simplexed sealing current or repeater powering on the remote (Central Office) side. DC path for such current through the unit is provided.

SNC Lyte Lynx® systems are intended for use at power substations and similar locations where high voltage isolation is required on the incoming copper telecom pairs to protect the network equipment from harm and to provide a personnel safety barrier against voltages within the limits of the isolator. This specifically includes protection from longitudinally induced voltage surges and Ground Potential Rise (GPR) that may occur during power system faults.

3.0 PRODUCT FEATURES

3.1 Transformer Isolation

This Lyte Lynx® data isolation interface model is a passive, magnetic-coupled device. Primary to secondary isolation is rated at 65kV BIL. The transformers have been tested and proven capable of handling 1000 + amps of drainage current for four milli-seconds. The isolation card's purpose is to protect the customer's station equipment - they are sufficiently robust to do the job without gimmicks to "protect the protector."

*Teleline Isolator is a trademark of Positron Industries, Inc.

3.2 Termination of Simplex Sealing Current

This card provides termination of simplex sealing or span line powering current from 10-20mA on the CO/Remote side. The remote side center taps of the two transformers are set to connect to each other via a power resistor to limit the sealing current to 10mA - 20mA. (See Section 4.1 and Figure 1).

3.3 Provide Span Powering

This card provides simplex sealing or span line powering up to 20mA of current on the station side for the purpose of powering the repeater or customer termination equipment. The Tip and Ring of the transmitting wire pair are positive and the Tip1 and Ring1 of the receiving pair are negative. The output voltage level can be either 130V or 190V depending on the setting of the switch SW3 on the station side of the card.

4.0 INSTALLATION

WARNING: DO NOT connect center taps of CO/Remote and Station sides of transformers together. Doing so would disable the isolation interface and create a hazardous situation.

WARNING: To provide personnel isolation from local ground, stand on a thick rubber mat and use other adequate insulation devices (rubber gloves) when working on the isolation system.

CAUTION: The incoming telephone pairs should be contained in insulated conduit (PVC, etc.), or the pair should be jacketed with sufficient insulation to withstand a voltage rise from ground fault potential and from fault induction voltage.

CAUTION: Any metallic shielding on the incoming CO/Remote pairs must be isolated from substation grounds all the way from the network low voltage interface (300 volt peak GPR point per IEEE Standard 487) to the entry into the Card Shelf. The conductors must also be isolated.

4.1 Setting Switch SW1, SW2 and SW3

Switch (SW2) is provided on the P30128 card to select the available input voltage on the card shelf. If the available voltage is -24V, set the switch to the 24V position. If the available voltage is -48V, set the switch to the 48V position. (See Figure 1).

Switch SW1 and SW3 are made available for selection of span powering voltage. If the span powering voltage required of the telecommunication equipment is 130V, set switch SW1 and SW3 to 130V. If the span powering voltage required of the equipment is 190V, set both switch SW1 and SW3 to 190V. (See Figure 1).

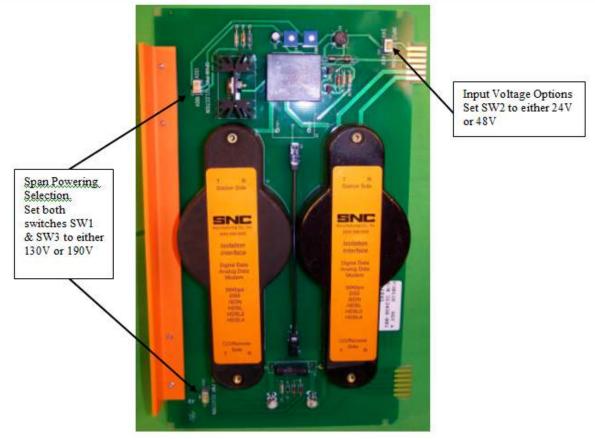


FIGURE 1: P30128 And Switch Settings

4.2 Accessing Remote Ground

On remote side, the center taps of the individual transformers are each connected to a separate 2-electrode 350-volt gas tube with a high holdover voltage rating. The other side of the gas tubes should be connected to a 5kV spark gap bus and then to CO/Remote ground via the dedicated cable shield. The card accesses remote ground on the lower backplane when plugged into the lower backplane edge connector. (See document that comes with the card shelf for details on terminating remote ground)

4.3 Insertion of Card

The P30128 Isolation Card requires an installed SNC Lyte Lynx® Card Shelf or Teleline Isolator* Card Shelf. With the card shelf installed and properly configured, slide the Isolation card into any available slot and firmly plug it into the card shelf backplane receptacles. This should be done without power applied to the card shelf.

4.4 Powering The Card

To power station side circuitry of the P30128 card, a **grounded -24VDC or -48VDC** voltage must be available on the card shelf. For proper connection, please refer to the appropriate documentation that comes with the card shelf being used. (T0355 for 3-Slot, T0395 for 6-Slot or T0349 for 12-Slot card shelf). The remote side must also be powered by the span powering from the CO unit.

CAUTION: All station terminal apparatus should be on the same ground grid when the station ground is connected in the Isolation Card Shelf.

5.0 PHYSICAL CHARACTERISTICS

5.1 Mechanical Configuration

Mechanical stability is provided by two separate backplanes in the card shelf, one on the substation side and one on the remote side. The Isolation Card is a two-sided printed circuit board manufactured in accordance with the appropriate PCB standards.

6.0 SPECIFICATIONS

TABLE 1: ISOLATION SPECIFICATIONS

LONGITUDINAL SURGE (1.2 x 50 micro-sec)	65kV PEAK
CONTINUOUS RATING	AC	20kVrms
	DC	58kVdc

TABLE 2: EXTERNAL SYSTEM INPUT REQUIREMENTS

INPUT SPECIFICATION		REQUIREMENT	
SIGNAL SOURCE & TERMINATION IMPEDANCES		100, 124, 135, 600, or 900 Ohm	
LOOP ATTENUATION			
(Sum of remote side and station side loops)		34dB Maximum	
SIGNAL LEVEL	1000 - 1200Hz @ 600 Ohms	+10dBm Maximum	
	32kHz @ 135 Ohms	+19dBm Maximum	
STATION SIDE	DC Line Voltage (Battery)	24VDC Typical	
		51VDC Maximum	
	Span Powering Voltage	130VDC Typical 190VDC Maximum	
	Power Required Per Card	10W Minimum	
REMOTE SIDE	Span Powering Voltage	130VDC Typical	
		200VDC Maximum	

TABLE 3:PERFORMANCE SPECIFICATIONS

TIP/RING To TIP1/RING1 Voltage				
Station Span Powering	SW3 set to 130VDC	130VDC Typical		
	SW3 set to 190VDC	190 VDC		
LONGITUDINAL BALANCE	1.2 - 300 kHz	>70dB		
RETURN LOSS				
1200 - 4000 Hz @ 600 O	hms	>18dB		
2.4 kHz @ 135 Ohms		>14dB		
32 kHz @ 135 Ohms		>18dB		

TABLE 3: PERFORMANCE SPECIFICATIONS - (Continued)

PARAMETER		SPECIFICATION	
MESSAGE CIRCUIT NOISE 1.2k - 4kHz @ 600 Ohms		<0dBrnc	
PHASE JITTER		<0.5°	
SIGNAL TO NOISE RAT	0	>50dB	
INSERTION LOSS	Relative to 1.2kHz @ 600 Ohms	<0.3dBm	
	Relative to 32 kHz @ 135 Ohms	<0.1dBm	
FREQ RESPONSE	Relative to 1.2kHz @ 600 Ohms	200Hz - 200kHz	
	Relative to 32kHz @ 135 Ohms	2kHz - 600kHz	
NOISE TO GROUND	C-Message	>45dBrnc	
	3kHz	>55dBrn	
CROSSTALK (to adjacent channel)		<-65dB	
SINGLE FREQUENCY DISTORTION		<2% THD	
OPERATING TEMPERATURE		-40 to +100°C (-40 to 212°F)	
OPERATING HUMIDITY		5 to 99% Relative Humidity	
DRAINAGE CAPACITY - Minimum		0.5 Amps continuous (400 A ² S	
		Surge Drainage Rating)	
1		· · ·	

SNC 56kbs/HDSL Transformers

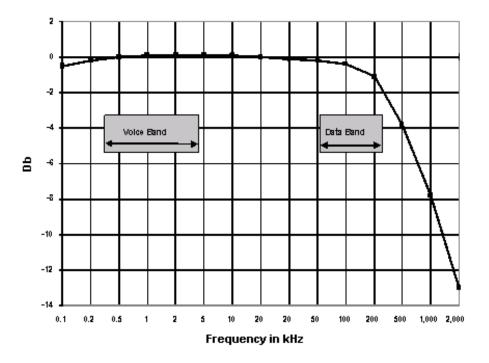


FIGURE 2: Frequency Response Curve

For further information or for technical support - call 800-558-3325 or visit www.sncmfg.com

SNC Manufacturing Co., Inc. 101 West Waukau Ave., Oshkosh, WI 54902-7299 800-558-3325 or 920-231-7370 FAX 920-231-1090 E-mail: <u>telecom@sncmfg.com</u> Website: www.sncmfg.com